Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds

نویسندگان

  • C.-C. Wu
  • R. P. Lepping
چکیده

We investigated geomagnetic activity which was induced by interplanetary magnetic clouds during the past four solar cycles, 1965–1998. We have found that the intensity of such geomagnetic storms is more severe in solar maximum than in solar minimum. In addition, we affirm that the average solar wind speed of magnetic clouds is faster in solar maximum than in solar minimum. In this study, we find that solar activity level plays a major role on the intensity of geomagnetic storms. In particular, some new statistical results are found and listed as follows. (1) The intensity of a geomagnetic storm in a solar active period is stronger than in a solar quiet period. (2) The magnitude of negative Bzmin is larger in a solar active period than in a quiet period. (3) Solar wind speed in an active period is faster than in a quiet period. (4) VBsmax in an active period is much larger than in a quiet period. (5) Solar wind parameters, Bzmin, Vmax and VBsmax are correlated well with geomagnetic storm intensity, Dstmin during a solar active period. (6) Solar wind parameters, Bzmin, and VBsmax are not correlated well (very poorly for Vmax) with geomagnetic storm intensity during a solar quiet period. (7) The speed of the solar wind plays a key role in the correlation of solar wind parameters vs. the intensity of a geomagnetic storm. (8) More severe storms with Dstmin≤−100 nT caused by MCs occurred in the solar active period than in the solar quiet period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Geomagnetic Storms Associated With Halo CMEs of January and April 1997

The 6 January 1997 and 7 April 1997 halo coronal mass ejections (CMEs) were associated with interplanetary magnetic clouds observed by WIND that led to increased geomagnetic storm activity as indicated by the hourly Dst index. A recently developed storm-prediction method is retrospectively applied to these two solar wind (SW) structures. The results are described in detail. Had the algorithm be...

متن کامل

Terrestrial Response To Eruptive Solar Flares: Geomagnetic Storms

During the interval of August 1978December 1979, 56 unambiguous fast forward shocks were identified using magnetic field and plasma data collected by the ISEE-3 spacecraft. Because this intervaI is at a solar maximum we assume the streams causing these shocks are associated with coronal mass ejections and eruptive solar flares. For these shocks we shall describe the shockstorm relationship for ...

متن کامل

Impact of Solar and Interplanetary Disturbances on Space Weather

Solar activity is the dynamic energy source behind all solar phenomena driving space weather. During an active solar period, violent eruptions occur more often on the Sun. The solar flares (SFs) and coronal mass ejections (CMEs) shoot energetic and highly charged particles towards Earth that ensuing ionospheric and geomagnetic disturbances. The some geomagnetic disturbances illuminate night ski...

متن کامل

Solar cycle effects in planetary geomagnetic activity Analysis of 36year long OMNI dataset

NSSDC's OMNI dataset, which now spans 1963-1999, contains a collection of hourly means of interplanetary magnetic field (IMF) and solar wind (SW) plasma parameters measured near the Earth's orbit, as well as some auxiliary data. We report a study of solar cycle effects in planetary geomagnetic activity in which 27-day averages of several OMNI parameters are compared with equivalent Kp and Dst a...

متن کامل

Predicting the occurrence of super-storms

A comparative study of five super-storms (Dst<−300 nT) of the current solar cycle after the launch of SoHO, to identify solar and interplanetary variables that influence the magnitude of resulting geomagnetic storms, is described. Amongst solar variables, the initial speed of a CME is considered the most reliable predictor of the strength of the associated geomagnetic storm because fast mass ej...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008